Online Surveying FE 208 Lectures 10 and 11

Angles, Bearings, and Azimuths

Learning Objectives for this Lecture

- 1. Know the two types of angles
- 2. Know the three requirements for turning an angle
- 3. Know the different angle types
- 4. Know the different directions of lines
- 5. Be able to compute azimuths from bearings
- 6. Be able to compute bearings from azimuths
- 7. Be able to compute angles by the tangent method
- 8. Be able to compute interior angles from direction
- 9. Be able to compute direction from angles

Introduction

- Location of a line is done with angles and direction
- Two types of angles
 - Horizontal

Three requirements for turning an angle:

- Reference line
- Turning direction
- Angle value

Example: We want to turn the angle ABC

1. Establish the reference line

2. Establish the turning direction

3. Compute the angle value

Angle Types

- Interior angles
 - Used in polygons or closed traverses
 - Exterior angle + interior angle = 360° = check

- Angles to the right
 - Turned clockwise normally
 - Turned from rear station to the forward station

- Deflection Angles
 - Turned as an extension of the back line to the forward station
 - Normally used on open traverses or linear surveys
 - Important to note direction turned

Directions of lines

Angles are referenced to a control meridian line of some sort – generally north-south.

Two types of directions:

- Bearings
- Azimuths

Bearings

Bearings are expressed by quadrant with respect to the reference line.

- Measured as the acute angle between the reference line and the line itself
- Measured either north or south
- Referenced additionally to the east or west
- Referenced to the direction of the survey

Line BC – Bearing = $N 55^0 E$

Field process

Bearings are measured *ahead* or *forward* and then checked *back*.

Sta	HD	Brg AHD	Brg BCK	Notes
A		N 62 E		
	121.85			
В		S 70 E	S 61 W	
	89.63			Creek
С		N 27 E	N 70 W	
	82.61			
D			S 28 W	

Azimuths

Azimuths are expressed clockwise with reference to the reference line.

- Measured as the total angle between the reference line and the line itself clockwise
- Generally measured from north
- No referencing from the east or west

Line $BC - Azimuth = 55^0$

Computing angles by the Tangent Method also called a Tangent Offset

Used on very long lines that have little room for angular error or for layout off of an existing line.

Tan A = a/b

Example:

We need to run a line at 72^0 18' 30" but our instrument is only good to 1^0

We can run a line 500' along b from our starting point O Compute the 900 offset distance a

Tan A = a/b

Tan 0^0 18' 30" = a/500'

 $(\text{Tan }0^0 18' 30'') * 500' = a$

a = 2.69

Computing Bearings

DRAW A SKETCH!!!

It is quite often necessary to compute bearings from angles

Again, the three requirements for turning an angle:

- Reference line
- Turning direction
- Angle value

Example problem: Line AB has been set at S 45° 30' E. Angle B was turned at 120° 30'. What is the bearing of BC?

Line $AB = line BA = N 45^0 30$ ' W

Bearing BC then = $120^{0} 30' - 45^{0} 30' = 75^{0} 00' = N 75^{0} 00' E$

Computing Azimuths

DRAW A SKETCH!!!

Example problem: Line AB has been set at $134^0\ 30^\circ$. Angle B was turned at $120^0\ 30^\circ$. What is the azimuth of BC?

$$120^{0} 30' - (360^{0} 00' - 314^{0} 30') =$$

$$120^{0} 30' - 45^{0} 30' = 75^{0} 00'$$

Additional problems

$$(90 - 69^0 15') = 20^0 45'$$

$$88^0 45$$
' - $20^0 45$ ' = $68^0 00$ '

$$90 - 68^0 00' = 22^0 00'$$

$$(90 - 69^0 15') = 20^0 45'$$

$$(90 - 20^0 45^\circ) = 110^0 45^\circ$$

$$(151^0 \ 15' \ -110^0 \ 45') = 40^0 \ 30'$$

Additional problems

$$(69^0 15' + 69^0 15') = 138^0 30'$$

$$(90 - 69^0 15') = 20^0 45'$$

$$(90 + 20^0 45' + 24^0 15') = 135^0 00'$$