Online Surveying FE 208
Lectures 12

Leveling
Learning Objectives for this Lecture

1. Know the definitions for leveling terminology
2. Understand the effects of curvature and refraction on an image
3. Be familiar with the different types of leveling procedures
4. Be able to calculate elevation differences using the profile leveling method
5. Be able to write correct leveling note format for profile leveling

Leveling and Elevations

Definitions:

Leveling- The process of finding elevations of points, or of the differences of elevation between points.

Level surface - A curved surface that at every point is perpendicular to the local plumb line.

Horizontal line - A line in a horizontal plane

Vertical datum - Any level surface to which elevations are referred (for example mean sea level).

Bench mark - A relatively permanent object having a marked point with known elevation.

Vertical control - A series of benchmarks established throughout an area.

Line of Sight

Curvature of the earth. If a level sight was set on a level rod one mile away from a point on the earth, the reading would be greater than the actual by $2 / 3$ of a foot.

Curvature

The line of sight is refracted downward approximately $1 / 7$ of the deflection between the horizontal and the level lines.

The effects of curvature on line of sight can be expressed as:

$$
C_{f}=0.667 M^{2}=0.0239 F^{2}
$$

Where: $\mathrm{M}=$ distance in miles
$\mathrm{F}=$ distance in thousands of feet
$\mathrm{C}_{\mathrm{f}}=$ Line departure in feet

Refraction

Refraction causes the reverse of curvature, in other words, objects appear higher than they really are.

Refraction: Light passing through the atmosphere is bent so that in reading a rod, the reading is less than the actual. This offsets the earth's curvature by about 14%.
The effects of curvature on line of sight can be expressed as:

$$
H_{f}=0.093 M^{2}=0.0033 F^{2}
$$

The two formulas for curvature and refraction corrections can be combined as:

$$
H_{f}=0.574 M^{2}=0.0206 F^{2}
$$

Example: In a level rod shot of 300' (beyond the scope of our level guns), the effects of refraction and curvature only amount to 0.0019 ’

$$
H_{f}=0.0206\left(\frac{300^{\prime}}{1000^{\prime}}\right)^{2}=0.001854^{\prime}
$$

Curvature and Refraction

Types of Leveling

- Profile leveling
- Differential leveling
- 3-wire leveling
- Trigonometric leveling
- Barometric leveling
- GPS

Profile Leveling

Profile leveling is the simplest form of leveling and is use to determine ground profiles for forest operations and planning

- Road maintenance for grade changes
- Skylines for deflection clearance
- Preliminary route design for major breaks
- General landform

Equipment used

- Clinometer or Abney
- Hand level and grade rod
- Tape or other distance measurement device

Elevation can be thought of as the difference in height between a known point and an unknown point.

Methods for Profile Leveling

Clinometer or Abney

The clinometer or Abney may be used to determine the \% angle between two points of interest

Horizontal
\% slope = Rise / Run
Rise = \% slope x Run
Height $=$ \% slope x Horizontal distance

Example 1

The slope angle at A to $\mathrm{B}=+27 \%$, the horizontal distance is 125 ', the elevation at A $=500.0$,

The height difference between A and B = +0.27 x 125’ = +33.8’
Therefore, the elevation at $\mathrm{B}=500.0+33.8^{\prime}=533.8^{\prime}$

Example 2

The slope angle at A to $\mathrm{B}=-27 \%$, the horizontal distance is 125 ', the elevation at A = 500.0,

The height difference between A and $\mathrm{B}=-0.27 \times 125^{\prime}=-33.8^{\prime}$
Therefore, the elevation at $B=500.0+-33.8^{\prime}=466.2^{\prime}$

Hand Level

The hand level and grade rod may be used to determine the height difference between two points of interest directly. The hand level uses the concept of a height of instrument reading subtracted from a grade rod reading.

Height difference $=\mathrm{HI}-$ rod reading
Elevation = Previous elevation + height difference
Note: a rod reading larger than the HI indicates a lower elevation

Example 1

The HI is at 5.2^{\prime}. The rod reading from A to B is 3.1^{\prime}. The elevation at $\mathrm{A}=500.0^{\prime}$
The height difference between A and $\mathrm{B}=5.2^{\prime}-3.1^{\prime}=+2.1^{\prime}$
Therefore, the elevation at $\mathrm{B}=500.0+2.1^{\prime}=502.1^{\prime}$

Example 2

The HI is at 5.2^{\prime}. The rod reading from A to B is 7.3^{\prime}. The elevation at $A=500.0^{\prime}$
The height difference between A and $\mathrm{B}=5.2^{\prime}-7.3^{\prime}=-2.1^{\prime}$
Therefore, the elevation at $B=500.0+-2.1^{\prime}=497.9^{\prime}$

Notes for profile leveling with a clinometer

STA	SD	$\%$	HD	VD	ELEV
$1+94.3$					500.1
	56.5	-26	54.7	-14.2	
$1+39.6$	41.0	-8	40.9	-3.3	
$0+98.7$					517.6
	53.0	+23	52.0	12.0	505.6
$0+46.7$				5.6	
	47.0	+12	46.7	5.6	500.0
$0+00$					

Notes for profile leveling with a hand level

STA	HD	HI	Rod	VD	ELEV
$1+94.3$	54.7	5.2	9.1	-3.9	
$1+39.6$					504.3
	40.9	5.2	7.3	-2.1	
$0+98.7$					506.4
	52.0	5.2	2.7	2.5	
$0+46.7$					503.9
	46.7	5.2	1.3	3.9	
$0+00$					500.0

